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Abstract
The United States Department of Agriculture’s National Agricultural Statistics Service (USDA

NASS) publishes annual end-of-season estimates of crop yields for a wide variety of commodity
crops at the county level. These crop yields have been important determinants of payments allotted
to farmers under a variety of USDA agricultural support programs. NASS is transitioning county
estimates for more than a dozen commodity crops to a model-based approach. Building on Bayesian
sub-area models for crop yield (Erciulescu et al., 2018) applied to Illinois corn, this poster presen-
tation examines relevant factors of crop yield and useful posterior summaries for assessing official
county-level yields from 2011-2019.

Key Words: Agricultural Statistics, Bayesian Hierarchical Models, Official Statistics,
Small Area Estimation

1. Introduction

Official estimates of county-level crop yield published by USDA’s National Agricultural
Statistics Service (NASS) serve as important determinants and benchmarks in the adminis-
tration and disbursement of agricultural support payments to qualifying farmers and ranch-
ers in the United States. End-of-season yields are subject to several factors: technology use,
the farmer’s practices, and agroclimatalogical factors outside the farmer’s control. The sur-
veys supporting NASS crop county estimates are conducted post-harvest, when the events
of the season will be known in finality. However, the direct estimates of yield (and acreage
and total production) obtained may lack sufficient precision when respondent-provided data
become sparse at the desired county-level detail.

The contribution of this work is two-fold: 1) it illustrates the utility of a Bayesian hier-
archical, sub-area model for crop yield developed by Erciulescu et al. (2018) to synthesize
survey and auxiliary data and quantify the uncertainty therein, and 2) it expands on the
importance of accounting for agroclimatalogical variables in the production of official crop
estimates. The model and available inputs are described in Section 2. The results of a
model selection procedure are summarized in Section 3, and conclusions are provided in
Section 4.

2. Models for County-Level Estimates of Crop Yield

County-level crop yield is one parameter of interest in the production of NASS’s annual
county-level crop estimates. Crop yield is a ratio of total agricultural output (production)
to the total crop area successfully harvested. The necessity of this accounting identity mo-
tivated the approximate triplet benchmarking of Erciulescu et al. (2018), in which sub-area
Bayesian hierarchical models for harvested area and yield were formulated. The authors
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exploited the multiplicative relationship between a model for harvested area and a model
for yield, using the output to obtain Monte Carlo estimates for production. Since that publi-
cation, other Bayesian approaches that honor county-level lower bound constraints implied
my administrative data on crop acreage totals have been developed to improve the accuracy
of estimates of planted and harvested area (Nandram et al., 2020; Chen et al., 2020). Given
a model for harvested area, the decision to model yield is part of a strategy to produce co-
herent estimates at all levels of aggregation, addressing one of the specific requirements of
the NASS county estimates program identified in Cruze et al. (2019).

The map of the state of Illinois in Figure 1 is informative. It depicts the smallest admin-
istrative boundaries (counties) within larger contiguous boundaries known as agricultural
statistics districts (ASDs). Nine specific counties are highlighted, one from within each
ASD. These nine counties are emphasized in results presented in Section 3.

Figure 1: Map of Illinois depicting counties within agricultural statistics districts (ASD)

Letting i ∈ {1, . . . ,m} and j ∈ {1, . . . , ni} denote indices over ASDs and counties,
respectively, a variation of the Erciulescu yield model is specified as follows:

θ̂ij
ind∼ Normal

(
θij , σ̂

2
ij

)
, (1)

θij |β, νi, σ2µ
ind∼ Normal

(
x′ijβ + νi, σ

2
µ

)
, (2)

νi
ind∼ Normal

(
0, σ2ν

)
, (3)

where θij denotes the quantity of interest, county-level yield in the jth county within the ith

ASD, θ̂ij denotes the direct estimate of yield, and σ̂2ij denotes its corresponding estimate
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of the sampling variance (assumed fixed). The Bayesian model is fully specified with prior
distributions for model parameters and hyperparameters where σ2µ ∼ Uniform

(
0, 108

)
,

σ2µ ∼ Uniform
(
0, 108

)
, and β ∼ MVN(0, 1000 × Σ̂β̂). (The quantity Σ̂β̂ denotes the

estimated covariance matrix obtained from an OLS regression of survey estimates on cho-
sen covariates.) The sub-area model has neither explicit spatial nor temporal structure;
however, the linking model in Equation 2 facilitates borrowing of information via common
parameters (e.g., regression coefficients), from counties within the same ASD, and other
ASDs. The random effects acknowledge that the crop yields may come from different
hierarchies of populations, i.e., counties within agricultural statistics districts.

2.1 County Agricultural Production Survey Estimates

In 2011, NASS standardized its data collection in support of crops county estimates nation-
wide. Federally mandated crops and additional row crops and small grains crops were
captured under the multivariate probability proportional to size sampling design of the
County Agricultural Production Survey (CAPS). More detail about the NASS survey cy-
cle, supported crops, and the CAPS design can be found in Cruze et al. (2019) and National
Academies of Sciences, Engineering, and Medicine (2017). County-level direct estimates
are available from CAPS, and their estimated sampling variances serve as plug-in estimates
of sampling variance in the model above.

Examination of direct estimates of corn for the 102 counties of Illinois reveals several
interesting features. Illinois is a member of the so-called ‘Corn Belt’, and one of the largest
producers of corn in the United States. Even so, the number of reports of corn obtained
varies by county, and in some cases, may be small. The number of reports received has
declined over the years. This could be due in part to refining sampling protocols over the
years, but like other survey organizations across the globe, NASS also faces budgetary
constraints and increasing rates of nonresponse. Item nonresponse is a feature of CAPS
estimates; respondents may provide information about acreage but decline to complete
survey items related to yield in production. This explains the leftward shift of the boxplots
for yield in Figure 2. CAPS utilizes reweighted survey estimators to account for this item
nonresponse.

The lower panel in Figure 2 depicts boxplots for coefficients of variation associated
with CAPS direct expansions of harvested area and with the ratio estimates of yield. The
median coefficients of variation for harvested area show modest increase over time, com-
mensurate with the reductions in reports of corn depicted in the upper panel. Coefficients of
variation for yield ratios tend to be substantially smaller as the production total (numerator)
is positively correlated with the harvested area (denominator) total. The boxplot for yield
coefficients of variation in 2012 stands out. The 2012 crop year was characterized by a pro-
found drought that affected much of the Corn Belt. While standard errors for county-level
yields remain similar year in and year out, the magnitudes of Illinois corn yield estimates
were effectively cut in half, increasing measures of relative variability in the county-yield
estimates.
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Figure 2: Number of reports of corn and coefficients of variation for CAPS corn estimates
in Illinois

2.2 Potential Covariates

State-level estimates of Illinois corn yield and corn crop progress and condition are given
in Table 1 for the years 2011 to 2019. A simple linear regression model of state corn yield
on crop year was fit using 40 year history of official Illinois corn yields (1980 to 2019,
inclusive)1. The trend yields reported in Table 1 are fitted values of the estimated trend
equation ŷield = 2.2 year− 4253.8 (R2 = 0.62, F1,38 = 63.1); the deviations from trend
(residuals) are the differences, in bushels of corn per harvested acre. Once again, 2012
stands out immediately as an anomaly. According to official progress2 and crop condition3

statistics, the 2012 crop year for the Illinois corn crop was characterized by conditions
conducive to early planting, followed by severe drought conditions near a critical growth
stage called silking (see Figure 3). This affected the quality of the crop and the total volume
of corn harvested at the end of the season, resulting in diminished corn yields.

Cruze et al. (2019) discussed the importance of identifying and expanding the pool of
useful covariates for yield modeling. As of this writing, NASS crop condition statistics are
not available at the county level. Unlike acreage, same-year administrative data on corn
yield are not available in a timely manner. While previous year estimates are available as
covariates, the effects of year-over-year change on current year estimates may need to be
attenuated.

Erciulescu et al. (2018) opted to use ASD-level precipitation totals curated by the Na-
tional Oceanic and Atmospheric Administration, and the National Commodity Crop Pro-
ductivity Index (NCCPI) for corn produced by USDA’s Natural Resources Conservation
Service, aggregated to a county-level USDA NRCS Soil Survey Staff (2019). The NCCPI
is a crop-specific, soil productivity index ranging from [0,1], with values near 1 indicating

1Available at: https://quickstats.nass.usda.gov/results/0862C7EA-3489-3525-A588-497CD212DF38
2Available at: https://quickstats.nass.usda.gov/results/4751BA6B-038D-3393-87F5-B3F49EAE83FA
3Available at: https://quickstats.nass.usda.gov/results/1A63866D-5109-3267-90BA-45B87BDA05FD
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Table 1: State-level corn yield estimates and corn crop progress for Illinois from 2011-
2019. *Statistics not published during Week 40 due to lapse in federal appropriations.

Year
Illinois State Corn Yield (bu/ac) Percent of Crop
NASS Trend

Deviation
Planted Silking Good/Excellent Mature Harvested

Official Yield Week 16 Week 27 Week 30 Week 39 Week 40

2011 157 171.5 -14.5 10 27 53 91 49
2012 105 173.7 -68.7 59 77 5 98 80
2013 178 175.9 2.1 1 8 64 71 *
2014 200 178.1 21.9 5 28 82 80 23
2015 175 180.3 -5.3 15 26 57 89 50
2016 197 182.5 14.5 42 53 83 97 62
2017 201 184.7 16.3 34 33 63 73 38
2018 210 186.9 23.1 4 76 80 96 63
2019 181 189.1 -8.1 1 4 44 40 13

Figure 3: University of Nebraska Drought Monitor reflecting conditions at conclusion of
Week 30, 2012
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high levels of soil productivity for non-irrigated practices.
NCCPI is a property of soil characteristics in the county, and it is not subject to rapid

fluctuation each season. In contrast, temperatures, rainfall and soil moisture profiles may
differ from one growing season to the next. In addition to the NCCPI, the following county-
level agroclimatic variables have been curated for each year and calculated by summation
over the range of weeks as noted below:

• PRECIP–accumulated rainfall totals during weeks 27 to 30,

• KDD–killing degree days, a measure of heat stress accumulated above the 86F thresh-
old during weeks 27 to 30,

• GDD–accumulated growing degree days over the 50F degree threshold accumulated
from weeks 16 to 40,

• ARID–the agricultural reference index for drought described by Woli et al. (2012)
accumulated over weeks 16 to 40.

The ranges of weeks chosen reflect agronomic understanding about several factors that
contribute along the life cycle of the Illinois corn crop. (See, e.g., (Nafziger, 2009, Ch.2)
for more agronomic background on Illinois corn crop.) Weeks 16 to 40 encompass ‘typical’
activities from planting to the onset of maturity. Weeks 27 to 30 approximate the window
around the reproductive silking stage, when the corn crop is particularly susceptible to
combinations of heat stress and lack of soil moisture.

3. Results

3.1 Covariates Selection

The pool of covariates identified above is not exhaustive. A number of additional (and
likely positively correlated) covariates may also be available. In addition to main effects,
interaction terms may be of interest. The idea of sparsity, that only a few of many potential
explanatory variables exert the most impact on the model, is worthy of exploration.

Accordingly, the ordinary least squares regression model below guides the search for
sets of covariates to be permitted into the Bayesian sub-area model for yield:

yield = β0 + β1NCCPI + β2GDD+ β3PRECIP + β4KDD+ β5ARID

+ β6
KDD

PRECIP
+ β7(KDD×ARID) + ε.

(4)

As separate models are to be fit for each year, all possible submodels of Equation 4 consti-
tute 26 = 64 possible models per year (excluding an intercept only model, and allowing for
the possibility of interaction terms without main effects). Rather than fitting 64 Bayesian
models per year, exploration of all combinations of covariates was facilitated by regression
using the dredge function from the R software’s MuMIn package (Bartón, 2020). (Recall
that whatever the choice of covariates, the estimated covariance matrix Σ̂β̂ is part of the
prior specification in the Bayesian model as well.) All possible sub-models of Equation 4
were fit to survey yield estimates and covariates data, separately for each year. The models
were ranked in terms of Bayesian Information Criterion (BIC), and the explanatory vari-
ables identified by the best performing model in terms of BIC were selected as candidates
as input into the Bayesian models for yield. For all years, a more parsimonious model
consisting only of intercept and NCCPI is also reported, as this variable is selected in all of
the top performing models and it explains appreciable amounts of the variation in the yield
survey data each year. The list of variables, R2 and BIC are shown in Table 2.
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Table 2: Summaries of linear regressions used to identify covariates of interest

Year Intercept+NCCPI BIC Chosen Model
R2 BIC R2 BIC Variables Admitted

2011 0.35 876.0 0.70 800.7 Intercept, NCCPI, KDD
2012 0.41 1,009.8 0.83 894.2 Intercept, NCCPI, GDD, KDD
2013 0.34 820.9 0.48 806.1 Intercept, NCCPI, PRECIP, KDD
2014 0.49 835.0 0.60 818.3 Intercept, NCCPI, GDD, KDD
2015 0.28 914.8 0.43 905.9 Intercept, NCCPI, PRECIP, KDD
2016 0.51 954.9 0.77 883.6 Intercept, NCCPI, KDD
2017 0.40 936.5 0.61 905.5 Intercept, NCCPI, KDD, ARID, KDD×ARID
2018 0.42 927.0 0.72 869.1 Intercept, NCCPI, GDD, PRECIP, KDD, (KDD÷PRECIP)
2019 0.35 874.0 0.52 860.2 Intercept, NCCPI, PRECIP, KDD, ARID, (KDD÷PRECIP)

3.2 Model Selection

The procedures above for identifying covariates lead to two presumptive Bayesian models
of yield per year, one incorporating only intercept and NCCPI, and the other representing
an expanded set of covariates as noted in last column of Table 2. For brevity, the latter is
referred to as the ‘alternative’ model.

The Bayesian hierarchical models were fit by Markov chain Monte Carlo simulation
using R and JAGS software. For each combination of year and choice of covariates, simu-
lations consisting of three chains, each with 30,000 Monte Carlo iterates were constructed.
The first 5,000 iterates of each chain were discarded as burn-in, and the remaining iterates
from each chain were subject to a systematic thinning, retaining every 25th sample. A total
of 3,000 iterates were used to construct posterior summaries.

The deviance information criterion (DIC) and convergence diagnostics for all model
parameters (all 102 county-level yields, θij , regression coefficients, β, and variance com-
ponents, σ2ν and σ2µ) were assessed. In all cases, potential scale reduction factors were near
unity. Effective sample sizes are acceptably close to 3,000, indicating appropriate mixing
of chains. In Table 3, the smaller values of DIC, emphasized in bold, indicate the preferred
model based on goodness of fit. The posterior summaries reported for each year in Sec-
tion 3.3 are with respect to the models indicated in bold: expanded models in 2012, 2017,
and 2018, and models with NCCPI as sole covariate in all other years. For brevity, posterior
means and standard deviations, percentiles of the posterior distributions, and the potential
scale reduction factors (R̂) and effective sample sizes (ESS) for the nuisance parameters of
each model are reported in Appendix A.

Table 3: Deviance information criterion (DIC) for candidate models
Year NCCPI Alternative

2011 645.1 650.4
2012 713.1 711.9
2013 696.7 697.0
2014 683.5 689.9
2015 728.4 735.9
2016 704.8 704.9
2017 736.6 731.7
2018 731.1 729.8
2019 740.3 746.5
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3.3 Expressing the Uncertainty of Modeled Estimates of Yield

Historically, NASS county estimates have been published without accompanying measures
of uncertainty4. The Bayesian models offer a means of synthesizing NASS CAPS survey
estimates with other relevant data in a repeatable manner that also gives rise to descriptions
of uncertainty.

For clarity in plotting, posterior distributions of county corn yields for nine counties
(one from each ASD in Illinois) are plotted across years 2011 to 2019 in Figure 4. The
counties are sorted approximately from North (Jo Daviess County) to South (Franklin
County). While the covariates included in each year’s selected model may differ, trac-
ing the distributions through time shows the change in yield each season, particularly the
sharp reduction in yields in the 2012 drought year. The spread of posterior distributions
changes each year due to sampling variance (different units may be selected) and differ-
ences in growing conditions. Although the models have no explicit spatial dependence
structure, some spatial trend, the tendency of southern counties to have lower yield relative
to northern counties and to the state yield, is still apparent.
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Figure 4: Posterior distributions of county-level corn yield. The vertical dashed line de-
notes the official Illinois state-level corn yield estimate.

In addition to the modeled point estimate of county-level corn yield (posterior mean),
the posterior distribution for 2012 corn yield in Jo Daviess shown in Figure 4 can be used to
construct meaningful interval estimates. Also plotted, the published 2012 annual county es-
timate, and a point estimate derived from NASS’s gold standard data collection, the Census
of Agriculture, both fall within a stringent 50% highest density interval; for this county, the

4IL county corn yields, 2011-2019: https://quickstats.nass.usda.gov/results/5A6E214E-6C0E-3C43-9028-
7A7F4F42F6B6
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model estimate is slightly closer to the Census yield than the official NASS annual estimate
is.5

NASS has traditionally produced tabular data consisting only of official point esti-
mates. While dissemination of entire distributions poses some interesting challenges for
the breadth of estimates NASS must publish, functions of standard error (model posterior
standard deviation) can be readily calculated and disseminated along with the point esti-
mates. As NASS transitions to a system of model-based county estimates, the focus has
been on providing coefficients of variation along with the point estimates. Figure 6 summa-
rizes the improvement in relative variability achieved based on modeling; note in particular
the reductions in coefficients of variation for the upper quartile and some of the outliers.
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Figure 5: Posterior distribution and regions of highest posterior density for corn yield in
Jo Daviess, IL, 2012

2019

2018

2017

2016

2015

2014

2013

2012

2011

0 10 20
Coefficient of Variation (%)

Ye
ar

Estimate

Model

CAPS Survey

Coefficients of Variation for Direct Estimates and Modeled Estimates of Yield

Figure 6: Comparison of coefficients of variation for direct estimates and model-based
estimates of county-level corn yield

5Census of Agriculture yield point estimates reported are the ratio of the production to harvested area totals:
https://quickstats.nass.usda.gov/results/E568388B-1F2C-38F2-B27A-1A406C12FBAB
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4. Discussion and Future Work

The presented sub-area Bayesian hiearchical model for county-level corn yields has the po-
tential to synthesize NASS survey estimates with other types of data in a repeatable manner
while quantifying the uncertainty associated with the estimates. A model incorporating a
soil productivity index showed reasonable peformance over a range of years. In years 2012,
2017, and 2018, the selected models incorporated additional agroclimatic covariates to im-
prove the accuracy and precision of the resulting yield estimates.

The Illinois corn crop represents just one commodity of interest in one state, whereas
support for NASS’s entire county estimates program entails producing estimates for more
than a dozen distinct types of crops each year. As of this writing, county estimates for
major row crops are to be produced in 41 states and for small grains commodities in 32
states. From the practical point of view, options that can ‘automate’ covariates selection for
yield models each year or help identify models that perform well over the widest range of
conditions are beneficial for producing the volume of official statistics that NASS must de-
liver annually. Crop simulation models designed to understand causes of rapid vegetative
development or sharp decreases in yield potential could help identify anomalous events,
especially where yield models may need tuning. Future work may also include investiga-
tion of the use of principal components analysis or independent components analysis for
retaining as much relevant agroclimatic information as possible in a smaller number of
covariates.
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A. Appendix

Table 4: Posterior summaries and convergence diagnostics for nuisance parameters of se-
lected models for corn yield

Year Parameter Posterior Posterior Percentile of Posterior Distribution
R̂ ESSMean Std. Dev. 2.50% 25% 50% 75% 97.50%

2011

βINTERCEPT 97.029 13.321 70.604 88.336 96.982 105.553 123.802 1.001 3000
βNCCPI 73.855 16.598 40.764 62.851 73.814 84.691 106.282 1.001 3000
σ2µ 123.024 20.965 88.711 107.955 120.713 135.554 170.251 1.001 3000
σ2ν 406.277 488.586 101.74 192.266 296.113 467.47 1337.921 1.001 2500

2012

βINTERCEPT 31.767 52.87 -67.805 -4.239 30.329 66.486 134.053 1.001 3000
βNCCPI 155.885 23.304 111.462 140.057 155.578 171.043 202.339 1.004 1800
βGDD 0.033 0.018 -0.002 0.021 0.034 0.046 0.068 1.001 3000
βKDD -0.668 0.082 -0.832 -0.722 -0.668 -0.611 -0.508 1.001 3000
σ2µ 227.773 39.526 161.401 200.177 223.29 251.919 317.345 1.001 3000
σ2ν 262.297 340.808 41.976 109.838 178.23 298.149 998.73 1.001 3000

2013

βINTERCEPT 108.171 11.751 85.063 100.4 108.013 116.317 131.278 1.001 2700
βNCCPI 91.052 16.446 59.161 79.737 90.959 102.033 124.288 1.001 2800
σ2µ 130.991 23.614 91.124 114.92 128.481 145.241 182.702 1.001 3000
σ2ν 37.314 43.096 1.999 12.301 24.718 46.086 150.14 1.001 3000

2014

βINTERCEPT 116.125 12.85 90.971 107.271 115.987 124.807 141.359 1.002 1600
βNCCPI 110.197 17.394 75.686 98.209 110.26 122.026 144.204 1.001 2400
σ2µ 123.539 21.814 87.665 108.602 121.547 136.068 171.775 1.001 3000
σ2ν 138.83 153.93 24.232 61.492 99.627 161.144 490.447 1.001 3000

2015

βINTERCEPT 87.83 18.368 53.082 75.737 87.328 99.299 124.557 1.001 3000
βNCCPI 114.317 25.47 63.825 97.894 115.011 131.029 163.387 1.001 3000
σ2µ 330.736 54.792 241.152 292.386 325.252 362.688 453.162 1.001 3000
σ2ν 169.297 173.011 24.034 73.033 121.744 203.295 601.893 1.001 3000

2016

βINTERCEPT 96.042 18.048 60.691 84.169 95.421 107.833 132.938 1.001 3000
βNCCPI 126.968 20.28 87.542 113.098 127.215 140.534 167.125 1.001 3000
σ2µ 188.228 32.312 134.623 165.238 185.383 207.327 258.691 1.002 1500
σ2ν 1198.779 950.91 332.44 621.847 920.979 1436.585 3780.343 1.001 3000

2017

βINTERCEPT 75.6 29.929 17.992 55.931 75.246 95.328 134.914 1.001 2200
βNCCPI 117.9 23.734 72.129 101.906 117.319 134.3 164.024 1.001 3000
βARID 0.73 0.42 -0.071 0.449 0.727 1.011 1.563 1.001 3000
βKDD 0.908 0.351 0.236 0.672 0.904 1.15 1.594 1.002 1400
βARID*KDD -0.016 0.005 -0.026 -0.02 -0.016 -0.013 -0.007 1.002 1600
σ2µ 225.113 40.744 156.392 196.237 220.708 251.03 315.21 1.001 3000
σ2ν 195.139 188.796 27.053 82.733 140.531 242.23 707.371 1.002 1500

2018

βINTERCEPT -61.385 42.056 -143.89 -89.6 -60.845 -33.441 20.419 1.001 3000
βNCCPI 45.911 20.194 7.655 32.611 45.393 59.284 85.468 1.001 3000
βGDD 0.073 0.014 0.047 0.064 0.073 0.082 0.099 1.001 3000
βKDD -1.36 0.186 -1.73 -1.481 -1.357 -1.236 -0.99 1.001 3000
βPRECIP 9.93 2.92 4.124 7.934 9.975 11.928 15.764 1.001 3000
βKDD/PRECIP 0.301 0.094 0.12 0.236 0.301 0.366 0.484 1.001 3000
σ2µ 127.101 25.759 84.84 108.977 124.534 142.779 185.37 1.001 3000
σ2ν 200.74 202.277 34.159 86.465 143.849 237.29 740.061 1.002 1800

2019

βINTERCEPT 123.672 14.99 94.347 113.588 123.897 133.832 152.708 1.001 3000
βNCCPI 72.006 20.378 33.381 57.95 71.69 85.799 111.687 1.002 2100
σ2µ 168.305 31.411 115.978 145.808 164.714 188.13 238.384 1.001 3000
σ2ν 223.084 212.891 46.739 102.708 165.279 264.191 775.993 1.001 2400
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